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Exact solutions for steady two-dimensional 
flow of a stratified fluid 

By CHIA-SHUN YIH 
Department of Engineering Mechanics, University of Michigan? 

(Received 15 February 1960) 

Three classes of exact solutions for steady two-dimensional flows of a stratified 
fluid are found. The flows which correspond to these solutions have arbitrary 
amplitude (however defined). Two of the three classes of solutions have close 
bearings on the lee-wave problem in meteorology. It is also shown that the 
amplitudes of the lee-wave components (if there is more than one component) 
depend not on the details of the shape of the barrier, but only on certain simple 
integral properties of the function for the singularity distribution generating 
the barrier. 

1. The equation governing steady two-dimensional flow of a stratified 
fluid 

This study is restricted to steady two-dimensional flows of a stratified fluid, 
assumed incompressible, inviscid, and non-diffusive. For such flows the Euler 
equations are 

p ( u-+w- :x a”z) (u,w) = - (:x -,- aay) p-(O,gp), (1) 

in which p and p are the pressure and the density, g is the gravitational accelera- 
tion, x and x are Cartesian co-ordinates, with x measured in the direction opposite 
to that of gravity, and u and w are the velocity components in the directions of 
increasing x and x ,  respectively. Since the fluid is incompressible and non- 
diffusive and the flow is steady, 

(u;+w;)p = 0. 

This permits the equation of continuity to be written in the form 

aul awl 
ax az 
-+- = 0, 

and the equations of motion to be written as 

po uI-+wI- (u’,w)) = - -,- p-(O,gp), ( :x aaz> (:x aaz) 

(3) 

(4) 

in which u1 = U(P/P,P, WI = W(f /POP,  ( 5 )  

t At Department of Applied Mathematics and Theoretical Physics, University of Cam- 
bridge, during 1959-60. 
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and po is a reference density. With the pseudo-vorticity -of defined by 

awl aui 
ax a z 9  

w' = - -- 

and f the pseudo stream function, so that 

the equations of motion can be further simplified to 

-Po@ fag, -& = & a [p+~po(u'2+w'2)]+gp. 

If (7) is multiplied by dx and (8) by dz, and the results added, 

-Pow'd@ = d [ p + + p ( ~ ~ + ~ ' ) ] + q p d ~  = d H - g z d p ,  (9) 
in which €7 =p+*p(u2+w2)+qpz 

is the Bernoulli constant, which is comtant along a streamline but may vary 
from streamline t o  streamline, and is hence a function of f alone. Since for 
steady flows streamlines are path-lines, and for an incompressible and non- 
diffusive fluid p is constant along a path-Une, p is also a function of $' alone. Thus 

with Vz@' replacing --of. Equation (10) is the governing equation sought, and 
is a modified form of an equation due to Long (1953), who did not relate the 
arbitrary function of f on the right-hand side of his equation to the Bernoulli 
constant. 

2. Types of exact solutions 
To discover exact solutions of (lo), it is natural to consider circumstances in 

which the equation becomes linear in @. To this end, one may adopt two different 
approaches. Since the function h(@') is related to the upstream condition, one 
may either try different upstream conditions and see whether these will make the 
equation linear, or assume the equation to be linear to  start with and inquire 
what the corresponding upstream condition must be. The second approach is 
evidently both exhaustive and more economical. Adopting the first approach, 
Long said in his impressive paper (Long 1953) of the case in whichpd is constant 
far upstream where the flow is parallel: 'This is the only case I have been able to 
discover for which the differential equation governing the motion of a stratified 
fluid is exactly linear.' This is hardly surprising, because the equation originally 
discovered by Long is in the form 



Steady two-dimensional jlm of a strati$& fluid 163 

in which + is the usual stream function and subscripts indicate partial differen- 
tiation, and in this form it is quite unsuitable for discovering all the cases in 
which ( I O U )  is exactly linear. The transformation (6) takes care of the inertia 
effect of density variation once and for all, removes the troublesome terms 
(representing the inertia effect) in Long’s equation, and produces (lo), which, 
while equivalent to Long’s equation, is so much simpler that the second approach 
can now be applied. It will be shown by the second approach that there are three 
essentially distinct classes of flows for which ( 1 0 )  is exactly linear, each consisting 
of infinitely many flows. One of these three classes contains Long’s case as a 
special (but very important) case. Thus the simple transformation (6) proves 
to be a very fruitful one. 

For (10) to be linear in +, dp/d$’ and h(@’) must be linear in @’. The linear 
equation therefore has the general form 

V 2 y  + gz(C + C,$’) = C2 + C3 21.’. 
If C, = C, = 0, this equation has the form 

vzlp + c g z  = c2. W a )  

v 2 y + c g z  = c3y. ( 1 l b )  

If C, = 0 but C, $: 0,  can be changed by a constant, and (1 1) becomes 

The class of flows governed by this equation includes Long’s case as a special 
case. If C, p 0 but C, = 0, (1 1 )  becomes, after @’ has been changed by a constant, 

V2+’ + c,gzlp = c,. 

v2y+gz(c+c,@’) = c,, 

(11 4 
If C, and C3 are both different from zero, the origin of z can be shifted so that the 
resdting equation is 

which, on changing lp by a constant, becomes identical in form with (1  1 c) .  
If now the dimensionless parameters 

g = x/d, q = z/d,  Y = y/va 
are introduced, in which d is a reference length and V a reference velocity, 
(1 1 a) to (1 1 c) assume the form 

V2Y + AT = B, 
V2Y + A7 = BY, 

W a )  
(12b) 

V2Y+AqY = B, W C )  

in which A and B are dimensionless constants, and, now and henceforth, 

3. Class (a): pseudo-potential flows 
For class (a),  the general solution is of the form 
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in which a fifth constant has been suppressed because Y can be changed by an 
arbitrary constant. Either member of the brackets in (13) can be used, or a 
linear combination of both members, except that for the first two brackets the 
linear combinations must be such that (12a) is satisfied. The first member on 
the right-hand side of (13) is a harmonic function satisfying the Laplace equation 

v 2 y h  = 0. (14) 

A re-examination of (lo), (1 1 a )  and (12 a)  reveals that 

A=--- 1 dP gd 
podY V2' 

so that, once Y is determined, 

is also known up to an additive constant. Furthermore, if p decreases with 
increasing 7 (stable stratification), and the flow is from left to right, dp/dY is 
negative, and the expression for A suggests that it is really the negative of the 
reciprocal of the square of a Froude number: 

A = -p-2. (17) 

A first example is furnished by a stratified flow between two horizontal boun- 
daries, at  z = 0 and z = d, into a line sink whose trace is situated at  the origin. 
Since the flow is symmetric with respect to the z-axis, it  is convenient to consider 
the flow to be separated by a plane vertical wall at z = 0 into two mirror images. 
The left one of these will be considered. If the flow at z = - 00 is parallel and with 
the parabolic distribution for the velocity (as weighted by the factor (p/po)*) 

u(7) = 6urn7(1-7), (18) 

in which Urn is the mean of U, then with Urn as the representative velocity V ,  

A = 1 2 ,  B = 6 ,  C = D = O  

Y = Yh - 2v3 + 3v2. in (13), and 

The boundary conditions are Y = 0 at 7 = 0, Y = 1 at 7 = 1, and at 6 = 0 
(0 < 7 < 1); Y = 372- 273 at 6 = - co. In  terms of Yh, these are 

y h = O  at q = O  and q =  1, (20) 

y h =  1+273-372 at ( =  0 (0 < 7 < l), (21) 

Yh=O at t = - c o ,  ( 2 2 )  

By the method of separation of variables the solution of (13) to (16) is found to be 

The final solution is 
II.' = u,,a(Y + 372- 2731, 
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and the density variation at infinity is 

P = Po + (Po - P1) (Y + 3T2 - 29% (25) 

in which po is the density at the bottom plate and p1 that at  the top plate. The 
flow pattern can be expected to have an eddy at the corner bounded by the upper 
boundary and the vertical wall, extending to  infinity. 

For another example consider the case of stratified flow with Y = - QAr3 at co. 
The lower boundary consists of a semicircle (r = ro, 0 < 0 < T )  and the lines 
(0 = 0, 0 = 7 ~ ,  r 2 T o ) .  No upper boundary is imposed. After the solution is 
obtained, any streamline (and in particular the one on which p is zero) can be 
taken to be the upper boundary. Here C = 0 in (13), and the upper members in 
the brackets of (13) can be taken. For illustration, B and D will be taken to be 
zero. The general case in which B and D are not equal to zero can be solved 
similarly. The reference length is now the radius of the cylinder, ro. For con- 

FIGURE 1. Pattern of a pseudo-potential flow of a. stratified fluid over a semicircle. 

24@' 1 dP 
Csrt Po W'  

Yp = -- , C? = - - r0 = radius of semi-circle, r1 = r/ro. 

venience, let r/ro be denoted by rl. The boundary conditions are (for Y = - QAy3 
at infinity): Y, = o at r ]  = 0 (at least for r 2 I) ,  Yh = 0 at r1 = co, Y, = QAr3 
for rl = 1 (9 2 0). The solution is 

= $[3(:-r;)sin0-(;-r:)sin30]. 

The flow pattern is shown in figure 1. As can be readily calculated from (20), 
the stagnation points are the points: 

0 . 9  0) = (a, O ) ,  (a, 70, (To,  O), P o ,  T ) ,  (ro,@),  (To ,  w. 
These form the corners of two roughly triangular eddies, symmetrically located 
over the horizontal boundary, as shown in the figure. 

4. Class (b): waves of arbitrary amplitude, with application to flow 
over a barrier 

The class of flows governed by (12b) can be applied to the atmosphere. If 
the flow is parallel, the corresponding stream function is governed by the 
equation 

(27) 
d2Yl 

dY2 
__ +A7 = BY1, 
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which has the solution 
A 

Yl = gy+Csinh  JBy+DcoshJBy. 

If the solution of (126) is written as the sum of two parts, i.e. 

Y = Y,+Yz, 

then Y2 satisfies Q?I?2 - BY2 = 0, (30) 
the solution of which satisfying the boundary conditionst Y2 = 0 at y = 0 
and y = 1 is of the form 

m 

Yz = Z A ,  exp k (B + nW)* 6 sin nny. 
n= 1 

The special case C = D = 0 has been considered by Long (1953). In  this case, 
if Y and Yl are expressed in terms of Ud, with U denoting the uniform velocity 
(weighted by the factor (p/p,)fr) far upstream, Y = Yl = y far upstream, and 
A = B. Thus (17), (28), (29) and (31) produce the solution 

al 

Y = y i- Z A ,  exp { & (n2n2 - F-2)* e} sin nny. (32) 

The solution by Long (1955) for stratified flow over barriers and the solution by 
Yih (1958) for stratified flow into a sink are of the form (32). These solutions can 
now be generalized to apply to the infinitely many upstream conditions described 
by (28). This gain in generality has been possible because (10) is substantially 
simpler than (10a). The actual modification of the solutions of Long and of Yih 
for application to the generalized upstream condition is straightforward and 
will not be presented here. Suffice it to say that (28) possesses so much latitude 
that an actual upstream wind condition can be much better approximated by 
(28) than by Y, = y, by appropriate choice of the constants A ,  B, C and D. 
Thus the meteorological significance of (27) is somewhat enhanced. Care must 
be taken, however, to ensure that Y (or Yl, since Y 2  is assumed to vanish far 
upstream) be monotone in y, for otherwise (since d p / d Y l  is constant) an unstable 
density distribution would be present in a part of the fluid in parallel flow. 

If B is negative and greater in numerical value than ( N T ) ~  but less than 
( N +  1)2n2, Y2 in (31) will contain N terms periodic in (, representing wave 
motion. It is commonly assumed (and the assumption has been experimentally 
verified) that upstream waves do not occur. But if we do not inquire how the 
waves are made and only ask whether a periodic condition can be consistent with 
(27), we see immediately that the answer is in the affirmative, because 

n=l 

N 

n=l 
Y = Yl+ (B,cos(B+n2n21~~+C,sinIB+n2n21*~)sinnny (33) 

t The condition Yz = 0 at 7 = 0 is imposed to make 7 = 0 a streamline. This is desirable 
if the p u n d  surface is flat or at least flat aa E -fa (since lee-waves, if they exist, will not 
die out as 5 +- 00). If there is a barrier on the surface of which we demand Y' = 0, then 
the streamline Y = 0 consists of the ground surface and the line 7 = 0 (which may con- 
stitute part of the ground surface), if the condition Y,(O) = 0 is imposed. The boundary 
condition Yz = 0 at 1 = 1 follows from the requirement Y = constant at 7 = 1. A discussion 
of the realism of this requirement when the theory is applied to the atmosphere will be 
given later in this paper. 
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is a solution of (27), with Y, given in (28). The corresponding density distribution 
given by 

- = constant dY? 

is not necessarily unstable, even though in certain regions the density increases 
upwards, because of the presence of acceleration toward the centre of curvature. 
The wave motion represented by (33) can have arbitrary amplitudes. For the 
particular cam of A = B, C = D = 0, 

(34) dP 

with Nn < F- l<  ( N +  l )n ,  

FIGURE 2. Stationary waves of arbitrary amplitude. 

represents a period motion with N wave components. In  spite of what Long 
himself said (as quoted in §2) ,  the waves represented by (35)-but not those 
represented by (33)-can be considered to have been discovered by him, because 
they are identical with the lee-waves he studied. The flow pattern for 

(37) 
2 

Yr = q+-cos(F-2-n2)*Esinnny, 

with P = 3/4n, is shown in figure 2. The term q in (35) and (37) represents only 
a pseudo-uniform velocity field, because Y is a stream function for the flow field 
(u’, w‘), and not for the flow (u, w). Therefore the parallel flow represented by 7 
does not correspond to an actually uniform velocity, and it is not possible by 
a shifting of co-ordinate axes to remove the parallel flow altogether. However, 
if drift is allowed, the discharge relative to a moving frame of reference can be 
made to be zero. The speed c with which the frame moves is exactly the phase 
velocity of the wave pattern relative to the moving frame, which is quite different 
from the stationary wave pattern. This speed can be calculated readily, and will 
not be given explicitly here. 

7T 



168 Chia-Xhun Y i h  

Use of vorticity distributions for generating stratiJied flows over a barrier 

For the case A = B, C = D = 0, Long (1955) gave a method for generating the 
solution for flow over a barrier which is approximately the same as one with 
a prescribed form. We shall now give an alternate method, for generating solu- 
tions of (12 b) for flow over a barrier of unspecified (except implicitly) form. This 
method has three advantages over Long's method. First, it is simpler. Secondly, 
the determination of the coefficients is exact, and does not involve the solution 
of infinitely many equations containing infinitely many unknowns. Thirdly, by 
means of it we can prove the very important factf that the amplitudes of the 
various lee-wave components depend not on the details of the shape of the 
barrier, but only on certain integral properties of the singularities generating 
the barrier. On the other hand, the shape of the barrier is directly though only 
approximately accounted for by Long's method, whereas the alternative method 
to be presented is entirely an inverse method which does not attempt to generate 
a solution for a prescribed barrier even approximately, except indirectly. 

The method will now be described. When 

(Nn)2 < - B < ( N +  1)'n2, 

the solution of (12b) can be put in the form 

I 
co 

'4"- = Yl+ 2 A,eanCsinnnq (for 5 < 0) ,  
N +  1 

i N 

n= 1 
Y, = Yl+ 2 (B,cosa,5+Cnsinan5)sinnnq 

00 

I + C 0, e-01.5 sin nnr] (for 2 O ) ,  
N + 1  

in which Y, is given by (28) and 

a, = IB+nV[+, 

The coefficients A,, B,, C, and D, are determined by demanding 

Y-=Y+ at E = O ,  (39) 

in which f(r]) = 0 for r ]  2 a and r] = 0, (41) 

and is arbitrary elsewhere. Since Y- and Y, satisfy (12b), (39) and (40) ensure 
that Y+ is the analytic continuation of Y-. There are no singularities in the 
domain outside of the barrier (which is determined a posteriori), and there are 
no upstream waves. The function f(7) corresponds to a sheet of distributed 
vortices (with horizontal axes) of variable strength at 5 = 0, extending from 
7 = 0 to 7 = a. It determines implicitly the shape of the barrier. 

fact. 
t The author is indebted to Dr G. K. Batchelor for pointing out the possibility of this 
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It will now be seen that B, and C, depend not on the details of the function 
f(7) but only on certain of its integral properties, or, more preciseIy, on certain 
of its Fourier coefficients associated with the functions sinnny. Indeed, (39) 
demands that A , = D ,  ( n > N ) ,  (42) 

B,=O ( n < N ) ,  (43) 

(44) 

a,C, = - 2  f(7)sinnnydy (n < N ) .  (45) 

and (40) demands 
1 

~ , ( A , + D , )  = 2 1  f(7)sinnnVdq (n > N ) ,  
0 

s,: 
Thus A ,  and D, are determined from (42) and (44), and C, from (45).t But (45) 
is most significant. It states that the amplitudes of the N wave components are 
equal to the first N Fourier coefficients of the function divided by a, (which 
depends only on B and n, and is quite independent off (7)). Certainly there are 
infinitely many functions which satisfy (41), have the same first N Fourier 
coefficients, and yet are different. The barriers corresponding to all these different 
generating functions have lee-waves with the same wavelengths and the same 
amplitudes, provided B is the same for the upstream flow. The situation is even 
independent of the coefficients A ,  C ,  and D in (28), though the shapes of the 
resulting barriers are dependent upon them. Near the barrier, the flow depends 
also on A ,  and D,, and hence also on the rest of the Fourier components. In  
other words, near the barrier the flow depends on all the Fourier coefficients of 
or on the full details off (?,I), as is to be expected. Thus we have arrived at a sort 
of St Venant’s principle in stratified flow. 

Now that the alternative method has proved fruitful, it is desirable to improve 
the method, in order to obtain some flexibility for dealing with barriers of 
specified forms. The method outlined above is good for constructing flows over 
rather bluB barriers, and is not adequate if the barrier is elongated. To remedy 
this situation, the obvious thing to do is to achieve a freedom for displacing the 
vortices (represented by f (7)) in the z-direction. This can be done simply by using 
two or more vertical vortex sheets at different values of x or 6. If (38) is rewritten 
as 

Y = Y,+Y,, 

in which the expressions for Y, are different for c 0, we see that 
Y, is the stream function which owes its existence to the presence of the barrier 
or of the singularities generating this barrier. If an additional line of singularities 
is situated at = b, with distribution function fi(q), and still another situated a t  
E = c, with distribution functionf,(q), the solution is of the form 

> 0 and for 

Y = Y,+!r,+Y3+Y4, 

in which Y, and Y, are similar to Y2 given in (38), except that the 5 in Y, should 
be changed to E - b and 6 - c for Y, and Y,, respectively, and the coefficients 
are now determined from fl(7) for Y,, and from f,(q) for Y,. Generalization to 

of f(7) must be zero. 
t If B = - Nana, aN = 0, and in order for the method to work the Nth Fourier coefficient 
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the case of more than three vortex sheets is obvious. If it is desirable to use 
isolated vortices, we can simply takef(7) to be a Dirac delta-function located 
somewhere above 7 = 0. 

Use of sourceq sinks, and doublets for generating stratified Jlows over a barrier 

Instead of demanding (39) and (40), we can demand 

Y--Y+ = f ( r ] )  at c = 0, 

with f(7) = 0 for 7 2 a and 7 = 0, 

and f(7) arbitrary elsewhere. The function f(7) now corresponds to a source 
distribution along a line element at  [ = 0. The solution is again in the form of 
(38), but the formulas for the coefficients are now 

A , = - D ,  ( n > N ) ,  C , = O  ( n < N ) ,  

A,-D,  = 2 f(7)sinnnqdv (n > N ) ,  1: 
If there is more than one line source, the generalization is the same as given in 
the last paragraph. The total algebraic sum of the sources must be zero in order 
that the barrier be closed. 

Again, by takingf(7) to be a Dirac delta-function, the solution corresponding 
to an isolated source or sink can be obtained. It can be readily shown that if a 
source is located at  6 = - b and a sink of equal strength (m) is located at  [ = b 
and at  the same height h, (dimensionless), the nth (n 6 N )  lee-wave is repre- 
sented by 

- 4m sin nnhs sin a, b sin a, 5 sin nnq. 

If b is small, the amplitudes of the lee-waves are proportional to Zmb, which is 
the negative of the moment of the source and sink. Thus, for a doublet of strength 
p (equivalent to - 2mb), the amplitude of the nth lee-wave is 

2pa, sin nnh,, 

and, for a doublet distribution from 7 = 0 to 7 = a, the amplitude of the nth 
lee-wave is 

2% IOU P ( 7 )  sin nnr] d7. 

If the doublet (isolated or distributed vertically) is not located at 6 = 0, only 
the phase of the pertaining lee-waves will be changed (by an amount equal to the 
g-coordinate of the doublet or doublet distribution). 
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A n  example, and a discussion of the eflect of the upper boundary 
Figure 3 shows a stratified flow (case ( b ) )  over a barrier, with waves in the lee. 
The velocity distribution far upstream is given indirectly by (28), with C = D = 0 
and A = B = - 9/16m2, so that u’ is constant far upstream. The flow is analytic- 
ally given by (38) and (42) to (45), with 

- f (7) = 10 sin 5 ~ 7  for 0 < 7 < 0.2, 

= o  for 0.2 < 7 < 1. 

There is a single lee-wave component, with wavelength (6/47)d, d being the 
depth from the (flat) upper boundary to the flat part of the lower boundary. 

FIGURE 3. A stratified flow over a barrier, with waves in the lee. 

Since the wave numbers of the lee-waves are a, (for those n’s that make 
B+n2m2 negative), the wavelengths must depend on B. In  the example just 

U’ being the (constant) velocity u’ at x = -a, where dp/dz is taken. Thus for 
a given U’ and density distribution, the wavelengths depend on d. Consequently, 
the location of the upper boundary has in this case, as indeed .it does in general, 
a profound influence on the flow pattern. This is not surprising, for as the depth 
increases the wave numbers for those lee-waves just able to stay stationary 
(i.e. to withstand the sweeping action of the parallel flow) must also increase, 
and vice versa, because the wave velocities increase with d and decrease with the 
wave-numbers (Yih 1960). However, the importance of the location of the 
imaginary upper boundary does raise the question of where to impose it in any 
given situation, and the question of the error committed by imposing it. 

A partial answer to these questions can be obtained by considering two super- 
posed layers of fluids. The lower layer has depth d, and is bounded below by a 
rigid plane boundary (the ground). The upper layer has depth d, and is bounded 
above by an auxiliary rigid plane. This auxiliary boundary (not the one the 
effect of which is under discussion) is imposed only for convenience, and is not 
necessary, for the same conclusions can be reached on the assumption that the 
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depth of the upper layer is infinite. The interface of the two layers is the place 
where the artificial rigid boundary under discussion is supposed to be imposed 
in the preceding analysis, and it is proposed to  see under what conditions the 
presence of this boundary introduces only small errors. Let the density gradients 
in the two layers be constant but different, and the density be continuous at the 
interface. At x = - co, zc' is supposed to  be the same for both layers, and is denoted 
by U'. The equations governing fluid motion in the two layers are 

V2Y- F-'7 = - F-'Y, V2Y,- F ~ 2 7  = -PUT, 

in which 

the density gradients being taken in the absence of waves. The parallel flow 
corresponds to 

and the wave motion is governed by (with the subscript 2 on the stream functions 
dropped for convenience) 

Yl = W U ) l  = 7, 

V'Y = - F-'Y, V V ,  = - FG'Y,. 

These equations are to be solved with the boundary conditions 
(i) Y = 0 at 7 = 0; 
(ii) Y, = 0 at 7 = d,/d; 

(iii) that the displacement be the same for both layers at  the interface; 
(iv) that the pressure (or, equivalently, the velocity) be continuous at the 

The solution of the eigenvalue problem so defined on the basis of a linearized 
interface. 

analysis yields the secular equation 

2 B cot (F-2 - m y  = - (F;2 - m2)h cot (F;2 - m2)4 3 - 1 (F-2-?n ) (: ) 
for the determination of the eigenvalues for the wave-number m in the factor 
sinmt contained in Y and Yu. Since in the atmosphere the gradient of the 
potential density in the stratosphere is greater than that in the troposphere, 

F;z = aF-2 (a > 1). 

Hence 

In the atmosphere, if d is taken to be the depth of the troposphere, F2 < 1. 
Consequently, if m is large enough to make F-2 - m2 much smaller than F2, 
the secular equation can be replaced by 

tan (F-2 - m2)a cot ( k " ~ ~  - m2)* 2 - 1 = 0. ) 
One set of solutions of this equation is 

m = (F-2-n2n2)* = a,, 

so long as n is not so large an integer as to make m small. Another set of solutions 
is obtained by setting the other factor (in the approximate secular equation) equal 
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to zero. The wave-numbers obtained are for waves in the upper layer when the 
interface is replaced by a rigid boundary. Thus, if we take d to be the depth of 
the troposphere and apply the analysis to meteorological problems, the situation 
is as follows: 

(1) The exponential terms in (38), corresponding to local disturbances only, 
are least affected by the replacement of the tropopause by a rigid boundary, and, 
since d is rather large compared with the vertical dimension of a barrier, are 
practically independent of d. 

(2) For small values of F ,  the shorter lee-waves predicted by the theory will 
exist in the atmosphere. The error committed by imposing the upper rigid boun- 
dary is small in connexion with the shorter lee-waves. 

(3) For the longer lee-waves, the error may be large. 
(4) The theory will furnish no information at all on lee-waves extending to 

the stratosphere. 
Because of the situation stated in (3) and (4), further work is necessary to 

determine more accurately the effect of the upper boundary. In  the absence of 
better information, d should be taken to be the depth of the troposphere when 
applying the theory presented here (which does have the advantage that the 
amplitude of the motion treated does not have to be small). 

5. Class (c): another class of waves of arbitrary amplitude, with 
possible application to atmospheric flows 

For convenience, the coefficient A in (12c) will be denoted by a2, so that a is 
imaginary if A is negative. The solution of (12c) is of the form 

(46) Y! = Yl(7) +Y2(C, r) ,  
in which Yl satisfies the equation 

and Y, satisfies the equation 
V2Y,+a27Y2 = 0. 

The density variation now satisfies the equation dp/dY cc Y. 
For B = 0 the solution of (47) is, aside from a constant factor, 

Yl(?d = &J+(&+) + QN+(Qa 79) -=f(r). (49) 

For B =t= 0 the substitution 
=f(s)#t71)+K1 

Since f(0) = 0, Y, = K ,  at 7 = 0. (It is no longer always permissible to take 
Y = 0 at 7 = 0, because in reaching ( l l c )  Y is already assumed to have been 
modified by an additive constant if necessary.) The constant K’ in (51) ensures 
that Yl can be adjusted to take any value K ,  at 7 = 1 provided J*(#a) $. 0. 
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The solution of (48) is of the form 

n= 1 
in which b = -a2/a%, and 

P@, b,  7) = (7 - b)* {qw - bP1 J$Q.(7 -@+I - J+[3"( - b)+l q Q a ( 7 -  b)+I), 
(53) 

(54) 

and bn are the eigenvalues satisfying 

P(a, b, 1) = 0. 

If a t  is negative, (52) corresponds to a wave motion with periodic components. 
Solutions Y, and Y2, given in (51) and (52), can be used for application of 

Long's method or the alternative method proposed in $4, in dealing with flow 
over a barrier. In fact, the entire development in $ 4  can be repeated in a strictly 
similar manner for the new forms of Y, and Y2, and the problem of flow into a 
sink treated by Yih (1958) can again be solved if the upstream condition is 
described by (51) and [ A  I is sufficiently small. We shall not work out the details, 
which are tedious but stmightforward, and shall content ourselves by pointing 
out that (51) again represents infinitely many upstream conditions, corresponding 
to the infinitely many sets of values for A ,  B, K', and K,, one of which may 
sometimes be a better approximation to the actual wind distribution than one 
represented by (28). 

This work has been done during the tenure of a Senior Post-Doctoral Fellow- 
ship of the National Science Foundation at the University of Cambridge, and the 
author wishes to express his appreciation to the Foundation for the opportunity 
to pursue uninterrupted research. The author is indebted to Dr G. K. Batchelor, 
F.R.S., for stimulation, criticism, and several useful discussions. It is also a 
pleasure to acknowledge the support of fundamental research on stratified flows 
by the Office of Ordnance Research in the past several years, without which the 
present work would have taken much longer to accomplish. 

Note added in proof. While this paper was in the proof stage, its contents 
were presented at a seminar of the Institute of Meteorology of the University 
of Stockholm. At that time Prof. G. Benton kindly informed the author that 
some of the results presented had already been published by Prof. R. R. Long 
in a brief note ('Tractable models of steady-state stratified flow with shear', 
Quart. J .  Roy. Met. SOC. 84, 1958, pp. 159-61). Upon examining that note, 
I found that equation (28) and the upstream condition corresponding to equation 
(12c) had already been obtained by Long by an entirely different approach. 

REFERENCES 

LONG, R. R. 1953 Some aspects of the flow of stratified fluids. I. A theoretical inveatiga- 

LONG, R. R. 1965 Some aspects of the flow of stratified fluida. 111. Continuous density 

YIH, C.-S. 1968 On the flow of a stratified fluid. Proc. Third U.S. Nat. Congr. App1. 

YIH, C.-S. 1960 Gravity waves in a stratified fluid. J .  Fluid Mech. 8, 481-508. 

tion. Tellus, 5, 42-57. 

gradients. Tellus, 7, 342-57. 

Mech. pp. 857-61. 


